Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Gang Yin,* Pei-Yuan Xu, Heng-Yu Qian, Na Zhou and Sheng-Min Liu

School of Materials \& Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China

Correspondence e-mail:
hengyuqian@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.091$
Data-to-parameter ratio $=8.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5-(2-Furyl)-3-methyl-1-(4-nitrophenyl)-2-pyrazoline

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$, the pyrazoline ring and the 4-nitrophenyl group are nearly coplanar, whereas the furyl and pyrazoline rings are roughly perpendicular. The occurrence of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions results in the formation of an $R_{3}^{3}(15)$ ring.

Comment

The derivatives of pyrazoline are mostly used in medicine, for example as antitumor (Hatheway et al., 1978), analgesic (Sobczak \& Pawlaczyk, 1998), and antimicrobial (Mahajan et al., 1991) agents. As part of our research, we have synthesized the new pyrazoline compound, (I).

(I)

The 4-nitrophenyl group and the pyrazoline ring are almost coplanar, making a dihedral angle of $3.52(14)^{\circ}$, while the furyl ring is nearly perpendicular to the pyrazoline ring, with a dihedral angle of $89.61(15)^{\circ}$. The dihedral angle between the furyl ring and the 4-nitrophenyl group is $87.93(14)^{\circ}$. The N2N 3 bond length $[1.400$ (3) \AA] agrees with that of a single bond (Burke-Laing \& Laing, 1976).

An interesting feature is the occurrence of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving two O atoms of the nitro group, leading to the formation of an $R_{3}^{3}(15)$ graph-set motif (Etter et al., 1990) (Table 1 and Fig. 2).

Experimental

4-Nitrophenylhydrazine ($1 \mathrm{mmol}, 0.153 \mathrm{~g}$) was dissolved in anhydrous methanol (15 ml), and $\mathrm{H}_{2} \mathrm{SO}_{4}(98 \%, 0.5 \mathrm{ml})$ was added. The mixture was stirred for several minitutes at 351 K , furylideneacetone ($1 \mathrm{mmol}, 0.136 \mathrm{~g}$) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h . The product was isolated and recrystallized from dichloromethane, brown single crystals of (I) being obtained after 1 d .

Received 30 October 2006
Accepted 6 November 2006

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$	$Z=2$
$M_{r}=271.27$	$D_{x}=1.361 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1}$	Mo $K \alpha$ radiation
$a=8.1504(13) \AA$	$\mu=0.10 \mathrm{~mm}^{-1}$
$b=8.4608(14) \AA$	$T=298(2) \mathrm{K}$
$c=9.6959(16) \AA$	Block, brown
$\beta=98.036(2)^{\circ}$	$0.27 \times 0.23 \times 0.20 \mathrm{~mm}$
$V=662.05(19) \AA^{3}$	

$V=662.05(19) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
SADABS(Bruker, 2000)
$T_{\text {min }}=0.974, T_{\text {max }}=0.981$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0428 P)^{2}\right. \\
\quad+0.017 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.10 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
=0.15 \mathrm{e}^{-3}
\end{gathered}
$$

5482 measured reflections 1470 independent reflections 1047 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$ $\theta_{\text {max }}=26.5^{\circ}$
$w R\left(F^{2}\right)=0.091$
$S=1.00$
1470 reflections
182 parameters

H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.51	$3.233(4)$	135
$\mathrm{C} 10-\mathrm{H} 10 \cdots 2^{\mathrm{ii}}$	0.98	2.47	$3.369(4)$	153

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+2$; (ii) $x, y-1, z$.

All H atoms were positioned geometrically and refined as riding with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.97 (methylene), 0.98 (methine) and $0.96 \AA$ (methyl), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{2}\right)$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)$. In the absence of significant anomalous scattering, Friedel pairs were merged.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors express their deep appreciation to the Startup Fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry (No. 2005001) and the Startup Fund for Masters of the Natural Scientific Research of Zhengzhou University of Light Industry (No. 000455).

References

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Figure 2
Partial packing view, showing the formation of a pseudo-trimer through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) $-x, y-\frac{1}{2}, 2-z$; (ii) $x, y-1, z$].

Bruker (2000). $S A D A B S$. Version 2.05. Bruker AXS Inc., Madison, Wisconsin, USA.
Burke-Laing, M. \& Laing, M. (1976). Acta Cryst. B32, 3216-3224.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. \& Quinn, F. R. (1978). J. Med. Chem. 21, 563-574.

Mahajan, R. N., Havaldar, F. H. \& Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-246.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sobczak, H. \& Pawlaczyk, J. (1998). Acta Pol. Pharm. 55, 279-283.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

